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Abstract
Completeness of the Dirac oscillator eigenfunctions is proved in one and three
spatial dimensions. Proofs are based on standard properties of the Hermite and
the generalized Laguerre polynomials.

PACS numbers: 03.65.Pm, 02.30.Gp

1. Introduction

In recent years various mathematical properties of solutions to the Dirac oscillator
eigenproblem have been extensively investigated both analytically and algebraically (e.g.,
[1–5]). The purpose of the present work is to prove completeness of the Dirac oscillator
eigenfunctions. To the best of our knowledge, this problem, very important from the point of
view of past [6–8] and planned applications, has not been studied yet.

2. The Dirac oscillator in one spatial dimension

2.1. Eigenproblem and its solutions

The differential eigenproblem for a one-dimensional Dirac oscillator is

cα

(
−ih̄

d

dx
− iβmωx

)
�(x) + βmc2�(x) = E�(x) (−∞ < x < ∞) (2.1)

�(x) bounded for x → ±∞ (2.2)

where ω > 0 (oscillator frequency) is a fixed parameter, E is an eigenvalue while α and β are
2 × 2 matrices obeying

α2 = β2 = I2 αβ + βα = 0 (2.3)

with I2 denoting the unit 2 × 2 matrix. For the present purposes the most convenient
representations of α and β are

α =
(

0 −i
i 0

)
β =

(
1 0
0 −1

)
(2.4)
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and expressing the wave function �(x) in terms of its components

�(x) =
(
f (x)

g(x)

)
(2.5)

we rewrite the eigensystem (2.1) and (2.2) in the explicit form

ch̄
df (x)

dx
+ mcωxf (x) = (mc2 + E)g(x) (2.6)

ch̄
dg(x)

dx
−mcωxg(x) = (mc2 − E)f (x) (2.7)

f (x) and g(x) bounded for x → ±∞. (2.8)

Solving the eigensystem (2.6)–(2.8) one finds [6] that its solutions may be labeled by a
quantum number n assuming all integer values. The eigenvalues are

En = ±mc2

√
1 + 2|n| h̄ω

mc2
(n = 0,±1,±2, . . .) (2.9)

where the upper sign should be chosen forn � 0 and the lower one forn < 0, while components
of the eigenfunctions, orthonormal in the sense of∫ ∞

−∞
dx [fn(x)fm(x) + gn(x)gm(x)] = δnm (2.10)

are

fn(x) =
√

λ(En + mc2)

2|n|+1|n|!√πEn

H|n|(λx)e−λ2x2/2 (2.11)

gn(x) = ±
√

λ(En −mc2)

2|n|(|n| − 1)!
√
πEn

H|n|−1(λx)e
−λ2x2/2 (2.12)

(observe that g0(x) ≡ 0) where Hk(ξ) is the Hermite polynomial [9] and

λ =
√
mω

h̄
. (2.13)

It will be profitable to notice the following symmetry properties of the eigensolutions:

E−n = −En (n 
= 0) (2.14)

f−n(x) =
√
En −mc2

En + mc2
fn(x) g−n(x) = −

√
En + mc2

En −mc2
gn(x) (n 
= 0). (2.15)

2.2. Proof of completeness

Completeness of the one-dimensional Dirac eigenfunctions will be established if we succeed
in proving the closure relation

∞∑
n=−∞

(
fn(x)

gn(x)

) (
fn(x

′) gn(x
′)

) =
(

1 0
0 1

)
δ(x − x ′) (−∞ < x, x ′ < ∞)

(2.16)

where δ(x − x ′) is the Dirac delta function. To this end, we observe that the matrix relation
(2.16) is equivalent to two ‘diagonal’ scalar relations

I (x, x ′) ≡
∞∑

n=−∞
fn(x)fn(x

′) = δ(x − x ′) (2.17)
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J (x, x ′) ≡
∞∑

n=−∞
gn(x)gn(x

′) = δ(x − x ′) (2.18)

and one ‘off-diagonal’ scalar relation

K(x, x ′) ≡
∞∑

n=−∞
fn(x)gn(x

′) = 0 (2.19)

(the second ‘off-diagonal’ relation follows immediately from the relation (2.19)).
To prove the relation (2.17), we decompose its left-hand side in the following way:

I (x, x ′) = f0(x)f0(x
′) +

∞∑
n=1

[
fn(x)fn(x

′) + f−n(x)f−n(x ′)
]
. (2.20)

On substituting here the explicit forms (2.11) of fn and collecting terms containing the Hermite
polynomials of the same degree, we arrive at

I (x, x ′) =
∞∑
n=0

λ

2nn!
√
π

e−λ2(x2+x ′2)/2Hn(λx)Hn(λx
′). (2.21)

Application of the following known closure relation obeyed by the normalized Hermite
functions

∞∑
n=0

1

2nn!
√
π

e−(ξ 2+ξ ′2)/2Hn(ξ)Hn(ξ
′) = δ(ξ − ξ ′) (−∞ < ξ, ξ ′ < ∞) (2.22)

and the following identity obeyed by the Dirac delta function

δ(λx − λx ′) = λ−1δ(x − x ′) (−∞ < x, x ′ < ∞) (2.23)

to the right-hand side of equation (2.21) immediately leads to equation (2.17).
To prove the relation (2.18), we make use of the fact that g0(x) ≡ 0 and decompose the

left-hand side of (2.18) as follows:

J (x, x ′) =
∞∑
n=0

[
gn+1(x)gn+1(x

′) + g−n−1(x)g−n−1(x
′)
]
. (2.24)

Substituting here the explicit forms (2.12) of gn and collecting terms containing the Hermite
polynomials of the same degree, we find

J (x, x ′) =
∞∑
n=0

λ

2nn!
√
π

e−λ2(x2+x ′2)/2Hn(λx)Hn(λx
′) (2.25)

hence (cf. equations (2.22) and (2.23)) equation (2.18) follows immediately.
Finally, to prove the relation (2.19), we again make use of the fact that g0(x) ≡ 0 and

write

K(x, x ′) =
∞∑
n=1

[
fn(x)gn(x

′) + f−n(x)g−n(x ′)
]
. (2.26)

Since equation (2.15) implies that the productfn(x)gn(x ′) is an odd function ofn, the summand
in equation (2.26) vanishes and thus equation (2.19) has been proved.
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3. The Dirac oscillator in three spatial dimensions

3.1. Eigenproblem and its solutions

Now we turn to the three-dimensional Dirac oscillator. The relevant eigenproblem is

cα · [−ih̄∇ − iβmωr]�(r) + βmc2�(r) = E�(r) (r ∈ R
3) (3.1)

�(r) bounded everywhere (3.2)

where againω > 0 (the frequency of the oscillator) is a fixed parameter andE is an eigenvalue.
In equation (3.1) α and β are 4 × 4 Dirac matrices [10].

The eigensystem (3.1) and (3.2) possesses solutions of the form

�κmj
(r) = 1

r

(
Pκ(r) !κmj

(nr )

iQκ(r) !−κmj
(nr )

)
(3.3)

where nr = r/r ,!±κmj
(nr ) are spherical spinors, κ = ±1,±2, . . . andmj = −|κ|+ 1

2 ,−|κ|+
3
2 , . . . , |κ| − 1

2 . The radial functions Pκ(r) and Qκ(r) are solutions of the eigensystem

ch̄
dPκ(r)

dr
+ ch̄

κ

r
Pκ(r) + mcωrPκ(r) = (mc2 + Eκ)Qκ(r) (0 < r < ∞) (3.4)

ch̄
dQκ(r)

dr
− ch̄

κ

r
Qκ(r)−mcωrQκ(r) = (mc2 − Eκ)Pκ(r) (0 < r < ∞) (3.5)

Pκ(0) = Qκ(0) = 0 Pκ(r) and Qκ(r) bounded for r → ∞. (3.6)

The structure of the spectrum of the radial eigensystem (3.4)–(3.6) depends on the sign
of κ . The eigenvalues are found [1, 3] to be

Enκ = ±mc2

√
1 + 4|n| h̄ω

mc2
(n = 0,±1,±2, . . .) for κ < 0 (3.7)

with the upper sign chosen for n � 0 and the lower one for n < 0, and

Enκ = ±mc2

√
1 + 4(|n| + l + 1

2 )
h̄ω

mc2
(n = ±0,±1,±2, . . .) for κ > 0 (3.8)

with the upper sign chosen for n = +0,+1,+2, . . . and the lower one for n = −0,−1,−2, . . ..
(Notice that for κ > 0 it is necessary to distinguish between the cases n = +0 and n = −0.)
Associated radial eigenfunctions, normalized according to∫ ∞

0
dr [Pnκ(r)Pmκ(r) + Qnκ(r)Qmκ(r)] = δnm (3.9)

are [3]

Pnκ(r) =
√
λ|n|!(Enκ + mc2)

$(|n| + l + 3
2 )Enκ

(λr)l+1e−λ2r2/2L
(l+1/2)
|n| (λ2r2) (3.10)

Qnκ(r) = ±sgn(κ)

√
λ|n′|!(Enκ −mc2)

$(|n′| + l′ + 3
2 )Enκ

(λr)l
′+1e−λ2r2/2L

(l′+1/2)
|n′| (λ2r2) (3.11)

where L(α)k (ρ) is a generalized Laguerre polynomial [9]. (The same sign convention as in
equations (3.7) and (3.8) applies in equation (3.11).) It is to be observed that for κ < 0 one has
Q0κ(r) ≡ 0. The integers |n′|, l and l′ appearing in equations (3.7), (3.8), (3.10) and (3.11)
are defined by

|n′| =
{ |n| − 1 for κ < 0

|n| for κ > 0
(3.12)
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l = |κ + 1
2 | − 1

2 =
{ −κ − 1 for κ < 0
κ for κ > 0

(3.13)

l′ = |κ − 1
2 | − 1

2 =
{ −κ = l + 1 for κ < 0
κ − 1 = l − 1 for κ > 0.

(3.14)

In the next subsection we shall make use of the following symmetry relations:

E−nκ = −Enκ (except for n = 0 when κ < 0) (3.15)

P−nκ(r) =
√
Enκ −mc2

Enκ + mc2
Pnκ(r) Q−nκ(r) = −

√
Enκ + mc2

Enκ −mc2
Qnκ(r)

(except for n = 0 when κ < 0) (3.16)

stemming from equations (3.7), (3.8), (3.10) and (3.11).

3.2. Proof of completeness

The supposed closure relation obeyed by radial eigenfunctions is
∞∑

n=−∞

(
Pnκ(r)

Qnκ(r)

) (
Pnκ(r

′) Qnκ(r
′)

) =
(

1 0
0 1

)
δ(r − r ′) (0 < r, r ′ < ∞).

(3.17)

We shall prove it by deriving the following summation formulae:

Iκ(r, r
′) ≡

∞∑
n=−∞

Pnκ(r)Pnκ(r
′) = δ(r − r ′) (3.18)

Jκ(r, r
′) ≡

∞∑
n=−∞

Qnκ(r)Qnκ(r
′) = δ(r − r ′) (3.19)

Kκ(r, r
′) ≡

∞∑
n=−∞

Pnκ(r)Qnκ(r
′) = 0. (3.20)

It is to be remembered that in equations (3.17)–(3.20), as well as in the rest of this subsection,
the summations over n, extending from −∞ to +∞, for κ < 0 include a term corresponding
to n = 0 while for κ > 0 include terms corresponding to n = +0 and n = −0.

We begin with the relation (3.18). If κ < 0, we decompose the left-hand side of that
equation in the following way:

I−l−1(r, r
′) = P0,−l−1(r)P0,−l−1(r

′) +
∞∑
n=1

[
Pn,−l−1(r)Pn,−l−1(r

′) + P−n,−l−1(r)P−n,−l−1(r
′)
]

(3.21)

while if κ > 0, we write

Il(r, r
′) =

∞∑
n=+0

[
Pnl(r)Pnl(r

′) + P−nl(r)P−nl(r ′)
]
. (3.22)

In either case, collecting terms containing the generalized Laguerre polynomials of the same
degree, we arrive at

Iκ(r, r
′) =

∞∑
n=0

2λn!

$(n + l + 3
2 )
(λr)l+1(λr ′)l+1e−λ2(r2+r ′2)/2L(l+1/2)

n (λ2r2)L(l+1/2)
n (λ2r ′2).

(3.23)
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The series in equation (3.23) may be summed on making use of the known closure relation
∞∑
n=0

n!

$(n + α + 1)
(ρρ ′)α/2e−(ρ+ρ ′)/2L(α)n (ρ)L(α)n (ρ ′) = δ(ρ − ρ ′) (0 < ρ, ρ ′ < ∞)

(3.24)

obeyed by the generalized Laguerre functions. Subsequent application of the relationship

δ(λ2r2 − λ2r ′2) = δ(r − r ′)
2λ2(rr ′)1/2

(0 < r, r ′ < ∞) (3.25)

following from the standard properties of the Dirac delta function, completes the proof of
equation (3.18).

Next we consider equation (3.19). When κ < 0 we utilize the fact that Q0,−l−1(r) ≡ 0
and rewrite the left-hand side of this equation in the form

J−l−1(r, r
′) =

∞∑
n=0

[
Qn+1,−l−1(r)Qn+1,−l−1(r

′) + Q−n−1,−l−1(r)Q−n−1,−l−1(r
′)
]

(3.26)

while for κ > 0 we decompose it in the following way:

Jl(r, r
′) =

∞∑
n=+0

[
Qnl(r)Qnl(r

′) + Q−nl(r)Q−nl(r ′)
]
. (3.27)

On collecting terms at the generalized Laguerre polynomials of the same degree, in both cases
we find

Jκ(r, r
′) =

∞∑
n=0

2λn!

$(n + l′ + 3
2 )
(λr)l

′+1(λr ′)l
′+1e−λ2(r2+r ′2)/2L(l

′+1/2)
n (λ2r2)L(l

′+1/2)
n (λ2r ′2).

(3.28)

Hence and from equations (3.24) and (3.25) we obtain equation (3.19).
To prove equation (3.20), for κ < 0 we rewrite its left-hand side as

K−l−1(r, r
′) =

∞∑
n=1

[
Pn,−l−1(r)Qn,−l−1(r

′) + P−n,−l−1(r)Q−n,−l−1(r
′)
]

(3.29)

and for κ > 0 as

Kl(r, r
′) =

∞∑
n=+0

[
Pnl(r)Qnl(r

′) + P−nl(r)Q−nl(r ′)
]
. (3.30)

Since equation (3.16) implies that the product Pnκ(r)Qnκ(r
′) is an odd function of n, the

summands in equations (3.29) and (3.30) vanish and we arrive at equation (3.20).
The closure relation (3.17) and the known closure relation

∞∑
κ=−∞
(κ 
=0)

|κ|−1/2∑
mj=−|κ|+1/2

!κmj
(nr )!

†
κmj

(n′
r ) = I2 δ

(2)(nr − n′
r ) (3.31)

obeyed by the spherical spinors, together with the following well known representation of the
three-dimensional Dirac delta function

δ(3)(r − r′) = δ(r − r ′)δ(2)(nr − n′
r )

rr ′ (3.32)



Completeness of the Dirac oscillator eigenfunctions 4997

immediately imply the closure relation for the four-component eigenfunctions (3.3)

∞∑
κ=−∞
(κ 
=0)

|κ|−1/2∑
mj=−|κ|+1/2

∞∑
n=−∞

�nκmj
(r)�†

nκmj
(r′) = I4 δ

(3)(r − r′) (3.33)

where I4 is the unit 4 × 4 matrix.
We leave to the reader as an exercise to prove completeness of the Dirac oscillator

eigenfunctions in two spatial dimensions [4].
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